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Among the porous polycarboxylate-based metal organic frame-
works (MOFs)! those based on rare-earth cations have deserved a
special attention due to their ability to form multifunctional hybrid
materials, combining their intrinsic porous character with physical
properties coming from the rare-earth, in the field of magnetism,
catalysis, or luminescenédany lanthanide-based MOFs present
relatively open frameworks with included solvent molecdlesit
collapse or become amorphous under guest renfosadn if they
present reversible solvent excharigé.However, a few solids
remain crystallized"6 upon solvent departure and present a
permanent porosit§fc6e7put to our knowledge, only one lan-
thanide carboxylate (Th(BTC){@®), s (DMF), MOF-76) has been

proven to show a significant porosity relative to nitrogen. 4
We present here the synthesis, crystal structure, and nitrogen oC

sorption properties of Th(BTB)(@#D)-2(CsH,.0) (BTB = 1,3,5-
benzenetrisbenzoate), a three-dimensional lanthanide carboxylate
MOF, later denoted MIL-103, presenting a permanent porosity and rigre 1. view of MIL-103 along thec axis, showing the hexagonal pores
a high surface area after guest removal. filled with free solvent molecules (one pore is pictured empty for clarity).

The BTB ligand, already used by Yaghi and co-workers with
transition-metal cations to produce highly porous MORsas
synthesized starting from 1,3,5-tritolylbenzéhdollowing the
published procedurg. MIL-103 was hydrothermally synthesized
from stoichiometric amounts of Tbg&6H,O, H;BTB, and NaOH
in a 1:1 biphasic mixture of water and cyclohexdAo{see
Supporting Information}3

MIL-103 is trigonal @ = 28.5344(8) Ac = 12.2148(5) A, space
groupR32) 13 and the structure is a rare case of the (3,5)-coordinated
minimal net hms# Th'"' ions are 9-fold coordinated by eight
carboxylate oxygen atoms and one water molecule, in accordance -
with bond valence calculationg+, = 2.91-3.18, vo, = 0.33—
0.36, depending on the bond valence parameters!¥)séttige-
sharing [TbQ] polyhedra define chains running in tialirection.
They are connected by the extended tritopic BTByand to afford
1-D hexagonal pores containing the free cyclohexanol molecules
(Figure 1). When solvent is removed, free cylinders of ca. 10 A Figure 2. X-ray thermodiffractogram of MIL-103 under air from 20 to

diameter (taking into account the van der Waals radii of the atoms) ?Soeoeog'xyﬁ;s tgvg&qgrgglggg odg)cgmis(pl%rgggot?ct)hnggﬂczggzggnges

are defined (see Figure 1). °C), purple (426-500°C). Insert: TG analysis under oxygen YC/min).
Thermogravimetric analysis was performed under oxygen at-

mosphere (see insert in Figure 2). A 23% weight loss is observed No change occurs until 28, where the long-range order begins
between room temperature and 18D, which is consistent with to disappear to form an amorphous phase above’@AFigure 2)

2'theta ()

the free solvent departure (theoreticaH-26%). A slightly decreas- before apparition of T4D; upon further heating.

ing plateau follows (2% weight loss, which could be associated  The first change certainly corresponds to a small structural
with the coordinated water departure) until 480, where MIL- rearrangement consecutive to the solvent departure (cell indexing
103 collapses. The remaining product is®@§) with a residual mass at 220°C: a = 28.178(1) A,c = 12.196(1) A). The loss of
(77% weight loss) consistent with theoretical value (77%). crystallinity above 280C could be associated with the bound water

X-ray thermodiffraction analysis was carried under air. Notice- departure, which is consistent with the TG analysis. MIL-103 heated
able diffraction intensity variations are observed between 50 and at 300°C does not recover its crystallinity after rehydration, proving
100°C, accompanied by a slight position shift of the Bragg peaks. that the transformation is irreversible on the day time scale.

t Universifede Versailles. The nitrogen .sorption properties of MIL-103 were investigated.

* UniversiteRennes |. The as-synthesized product was degassed at@56r 15 h under
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